
Enabling Network Diagnostics in Time-Sensitive

Networking: Protocol, Algorithm, and Hardware

Zeyu Wang∗§, Xiaowu He∗§, Xiangwen Zhuge∗, Shen Xu∗, Fan Dang†, Jingao Xu∗ and Zheng Yang∗B

∗ School of Software and BNRist, Tsinghua University † Global Innovation Exchange, Tsinghua University

{ycdfwzy, horacehxw, zgxw18}@gmail.com, xushen20@mails.tsinghua.edu.cn,

dangfan@tsinghua.edu.cn, {xujingao13, hmilyyz}@gmail.com

Abstract—Time-Sensitive Networking (TSN) is foreseen as a
foundational technology that enables Industry 4.0. It offers deter-
ministic data transmission over Ethernet for critical applications
such as industrial control and automotive systems. However, TSN
is susceptible to hardware and software errors, necessitating an
effective diagnostic system. Traditional network diagnostic tools
are inadequate for TSN fault localization due to the unique
characteristics of TSN. In response, this paper presents TSNCard,
a cross-cycle postcard-based diagnostic system tailored for TSN.
TSNCard introduces a novel telemetry protocol that leverages the
cyclical nature of TSN networks for data collection at each node.
This protocol, coupled with dedicated analytic algorithms and
hardware innovations within switches, forms a comprehensive
system for TSN monitoring and fault localization. Extensive
experiments on both simulation and physical testbeds show
that TSNCard can 100% localize the root cause of the TSN
misbehavior while adhering to industrial bandwidth restrictions.
TSNCard not only bridges the gap in the TSN protocol stack, but
also serves as a versatile toolkit for time-synchronized network
analysis, paving the way for future research.

Index Terms—Time-Sensitive Networking, Network Diagnos-
tics, Industrial Networking

I. INTRODUCTION

Time-Sensitive Networking (TSN) is recognized as a foun-

dational technology towards Industry 4.0 [1]. It enables deter-

ministic data transmission of time-sensitive traffic alongside

best-effort traffic in a time-synchronized Ethernet network,

catering to time-critical applications like industrial control and

automotive. To achieve this, TSN operates on the principle of

time-division multiplexing. A centralized scheduler calculates

the precise forwarding time of all critical flows at each hop,

preventing any potential conflicts [2].

Despite its precision, TSN is susceptible to hardware and

software errors similar to traditional network devices, resulting

in time synchronization errors, incorrect forwarding time, or

packet disorder. In industrial scenarios where TSN is essential,

swiftly localizing and rectifying such failures is imperative

to maintain the stable operation of production environments.

However, current TSN standards typically rely on a static con-

figuration issued by a central controller, lacking a closed-loop

control system for traffic monitoring and analysis. Existing

preliminary efforts can only detect the misbehavior without

fault localization, and they remain largely theoretical without

practical implementation [3], [4].

B Zheng Yang is the corresponding author.
§ Zeyu Wang and Xiaowu He are co-primary authors.

Probing Traffic

(d) Postcard Service Traffic

Sends metadata from switches

Cross-Cycle Postcard-based Telemetry

(b) Tracing
Service Traffic

Passively collect and store histories

Historical Packets

(c) Passport Service Traffic

Embeds metadata in packets

Embedded
Metadata

TSNCard

Cycle 0

Service Traffic

… …

Utilizes the cyclical nature of TSN;

Reconstructs full network status.

Cycle 1

Cycle 2

(a) Probing
Service Traffic

Actively sends probing traffic

Probing Traffic

Figure 1. A comparison of network diagnostic tools.

In traditional Ethernet, especially data center networks,

there are an abundance of methods for traffic analysis and

fault diagnostics. As shown in Fig. 1, they can be broadly

categorized into probing [5]–[8], tracing [9]–[11], passport-

based telemetry [12]–[14], and postcard-based telemetry [15]–

[17]. These methods typically encompass three major stages

to perform network diagnostics: (i) traffic measurement stage

that monitors and records real-time statistics for target data

streams; (ii) data collection stage that stores or collects the

statistics necessary for diagnostics; and (iii) subsequent issue

analytics stage that diagnoses the network issues based on

collected information.

Nevertheless, different from traditional Ethernet’s best-effort

approach, TSN necessitates predetermined schedule for the

critical traffic transmission. It reserves dedicated bandwidth

and nanosecond-level precise time slots for critical data

frames. This requirement significantly challenges conventional

diagnostic methods across their traffic measurement, data col-

lection, and issue analytics stages, as further explored below:

• Chain of Errors in Issue Analytics Stage. TSN’s time-

division multiplexing principle results in tight interdependence

among data stream schedules. This tight coupling means that

any variance in one stream’s transmission can adversely affect

others, leading to a chain of errors. The analytics algorithms

in traditional methods are not designed for such fine-grained

Table I
PERFORMANCE OF EXISTING METHODS AND TSNCARD ADDRESSING THE

CHALLENGES IN TSN DIAGNOSTICS.

Tracing Probing Passport
Traditional

Postcard
TSNCard

Error Localization N/A ✗ ✗ ✗ "
Bandwidth Cost N/A 14Mbps 15Mbps 59Mbps 1Mbps

Measurement Acc. N/A 92µs 178µs 163µs <0.1µs

forwarding time discrepancies, thus fall short in identifying

the root cause of these faults (§II-B-C1).

• Bandwidth Constraint for Data Collection Stage. In in-

dustrial networks, the majority of the bandwidth is reserved for

high-priority business traffic, limiting room available for net-

work monitoring and diagnostics. This constraints traditional

tools, designed for environments with abundant bandwidth, to

collect sufficient data for comprehensive analysis (§II-B-C2).

• Time Inaccuracy during Traffic Measurement Stage.

TSN requires data to be transmitted synchronously with

nanosecond-level precision. This requires diagnostic tools to

precisely measure critical traffic to notice the discrepancy be-

tween actual transmission time and the predetermined sched-

ule. However, existing tools generally lack the capability to

measure transmission time from hardware logic or access the

synchronized clock information, thus are inadequate for TSN

misbehavior identification (§II-B-C3).

Table I demonstrates some preliminary results in our case

study (details in §II-B). We find that none of existing methods

can perform well in these three stages of fault diagnostics.

Therefore, a brand new traffic analysis paradigm is required to

tackle TSN’s unique requirements. This poses many challenges

that are addressed in this work: (i) how to design a cooperation

mechanism between switches and the analytic server to gather

adequate diagnostic information under various constraints; (ii)

how to ensure swift and precise root cause localization in com-

plicated error scenarios; and (iii) how to achieve transmission

time measurement with high precision and low overhead.

In this paper, we present TSNCard, a cross-cycle postCard-

based diagnostic system for TSN. TSNCard is the first system

for comprehensive TSN traffic monitoring and fault localiza-

tion. Overall, TSNCard’s design and implementation excel

across three layers. To be specific:

• On the protocol front: we introduce a cross-cycle postcard-

based telemetry protocol. This protocol utilizes the cyclical

nature of TSN, collecting data frame transmission information

across cycles at each hop. It enables the analytic server to

reconstruct the necessary state of critical flows and compre-

hensively understand the network performance (§IV-A).

• On the algorithm front: we design two algorithms on the

analytic server. First, a flow-centric fault refinement algorithm

is proposed to localize the root cause of network problems

based on the deviation between data frames’ scheduled and

actual forwarding time. Second, to save analysis overhead, we

introduce a bandwidth-adaptive postcard prioritization algo-

rithm to adjust the amount of postcards to collect according

to the application requirements (§IV-B).

• On the hardware front: we propose a suite of hardware

technologies within TSN switches. They enable the mea-

surement of high-precision synchronized transmission time

without disrupting the flow of critical data frames, supporting

the execution of upper-layer algorithms and protocols integral

to TSNCard’s functionality (§IV-C).

We implement TSNCard based on the Xilinx Zynq plat-

form [18] with software and hardware co-design. Compre-

hensive experiments are carried out on both simulation and

physical testbeds with more than 24,000 test cases. The

experiment results demonstrate that TSNCard can 100% lo-

calize the root cause of the time-related TSN misbehavior in

any circumstance, operates smoothly under 1Mbps bandwidth

limitation, and takes only about 10ms to complete diagnostic

data collection.

In summary, this paper makes three contributions.

(1) We design and implement TSNCard, as far as we are aware

of, the first comprehensive TSN traffic diagnostic system

that can pinpoint the root cause of forwarding misbehavior.

It effectively resolves the gap in existing TSN standards,

enhancing its capabilities for closed-loop traffic analysis.

(2) We propose the cross-cycle postcard-based telemetry proto-

col, along with an array of software and hardware innovations,

to systematically realize comprehensive, efficient, and low-

overhead fault localization in TSN.

(3) We extensively evaluate the performance of TSNCard and

comparative systems on simulation and physical testbeds. The

results demonstrate TSNCard’s superior performance.

Contribution to the community. We make TSNCard’s proto-

type implementation publicly available1. TSNCard can serve

as a toolkit to effectively analyze any network traffic precisely

in an IEEE 802.1AS [19] compatible time-synchronized net-

work, benefiting not only future research, but also the industry

for network monitoring, traffic analysis, etc.

II. BACKGROUND AND MOTIVATION

A. TSN Scheduling and Forwarding Misbehavior

TSN uses a well-designed global schedule to reserve dedi-

cated bandwidth for critical traffic. Fig. 2(a) and (b) demon-

strate a simple network topology and the predetermined TSN

schedule. As seen, the schedule dictates the exact transmission

times of data packets on each network link. For example, the

packet in flow f1 is supposed to leave the output port of the

device DE1, switch SW1, and switch SW2 at timestamps 0, 1,

and 5, respectively. Following the schedule, the TSN switches

configure their egress ports’ gate control lists to regulate when

each packet can depart from their egress ports, thus ensuring

the smooth operation of a TSN network. Nevertheless, this

well-designed schedule also results in strong interdependence

among critical flows, introducing unique challenges.

We define TSN forwarding misbehavior as instances in

which the actual transmission times of the data packets deviate

from the planned schedule. These deviations may manifest as

packets that leave a switch earlier or later than scheduled or, in

more severe cases, packets being lost entirely. For instance, as

1https://github.com/MobiSense/TSNCard

t

DE1 SW1 SW2

DE2

DE3

Device

Switch

t

t

t

t

1DE1-SW1

SW1-SW2

SW2-DE2

SW2-DE3

DE3-SW2

2

1 2

3

3 2

1

t

t

t

t

t

1 2

21

3

2 3

1

(b) Expected Behavior

𝑓3 misses

DDL

𝒇𝟏
𝒇𝟐 𝒇𝟑

(c) Misbehavior

(a) Example Topology

𝑓2 leaves SW1

ahead of schedule

1 3 4 5 6 72 1 3 4 5 6 72

𝑓3 DDL 𝑓3 DDL

Figure 2. Forwarding misbehavior and chain of errors.

depicted in Fig. 2(c), the packet of flow f2 leaves switch SW1

ahead of schedule while the packet of flow f3 leaves switch

SW2 with a delay. Such deviations can lead to end-to-end

transmission delays that exceed the application requirements,

causing errors in critical industrial processes.

B. Limitation of Current Practice

To study the effectiveness of existing Ethernet diagnostic

systems, we deploy a testbed with TSN switches and eval-

uation toolkits (setup detailed in §V). As mentioned in §I,

tracing methods are not applicable in our scenario. Therefore,

we implement probing, passport, and traditional postcard

methods to tackle the TSN fault localization problem. The

overall results are demonstrated in Table I. As seen, neither

of the existing methods could successfully localize the root

cause of TSN misbehavior. We dig deep into the underlying

reasons and find that the challenges are three-fold:

C1: Chain of Errors. In TSN, packets are carefully scheduled

for transmission over shared network links, creating complex

interdependence among data streams. This time-division mul-

tiplexing setup ensures deterministic transmission for critical

industrial traffic. However, it also implies that a delay or

misalignment for one packet can disrupt the transmission of

subsequent streams, leading to a chain of errors from the

original malfunctioning device. As a result, when the end-

to-end delay of a data stream exceeds scheduled deadline,

numerous switches may already be experiencing forwarding

misbehaviors, making it difficult to pinpoint the root cause.

Fig. 2 demonstrates a typical chain-of-errors problem we

encountered. As the root cause of misbehavior, the switch SW1

in Fig. 2(a) encounters an internal hardware logic malfunction.

This affects the packet departure time of flow f2. As a result,

the packet from flow f2 arrives at switch SW2 earlier than the

schedule, subsequently delaying the transmission of flow f3.

From an operational point of view, only flow f3 appears to

miss its deadline, while flow f1 and f2’s end-to-end latency

is acceptable. However, if the network operators or diagnostic

tools only inspect the switches and devices along the path

of flow f3, they will never find the root cause of the issue,

i.e., switch SW1. According to our investigation, all existing

tools lack the granularity necessary to identify the forwarding

misbehavior at each switch. Therefore, they are unable to

effectively trace the error back to its origin.

10 15 20 25 30
of flows

10

20

30

40

50

60

Ba
nd

wd
ith

 U
sa

ge
 (M

bp
s)

Diagnostic
Bandwidth
Limitation

Probing
Passport
Postcard

(a) Limited available bandwidth.

0 100 200 300
Latency Measurement(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Actual Delay

Probing
Passport
Postcard

(b) Inaccurate time measurement.

Figure 3. Limitation of current practice.

C2: Limited Available Bandwidth. In a typical industrial

production network, most of the bandwidths are allocated

to high-priority traffic, e.g., periodic control and raw sensor

data, leaving limited bandwidth for traffic monitoring and

diagnostics. According to Li et al. [20] and our field study in

typical manufacturing factories, in a typical 100Mbps indus-

trial network, there are only about 1Mbps free bandwidths left

for network analysis. However, traditional Ethernet diagnostic

methods, designed for data centers with abundant bandwidth,

rely on continuous generation, collection, and storage of

historical telemetry data. Therefore, these methods may not be

effective under the constrained bandwidth available in TSN.

We evaluate the existing methods in our testbed for traffic

analysis. Specifically, we remove background traffic (video,

sensor data, etc.), leaving only periodic control traffic in the

network. Then, we apply each of these methods to continu-

ously collect analytic information of these critical signals, and

record their bandwidth utilization. As shown in Fig. 3a, the

bandwidth consumption of these methods increases linearly

with the number of critical flows. When the number of flows

exceeds 10, all of their bandwidth consumption exceeds the

1Mbps limit, leading to potential traffic congestion and loss

of analytic information.

C3: Inaccurate Time Measurement. TSN critical data frames

are required to be transmitted with nanosecond-level precision,

adhering to the predetermined schedule. Therefore, to effec-

tively identify potential forwarding misbehavior in TSN, it is

essential to acquire high-precision packet-level transmission

time at each hop. Existing methods either only have end-to-

end delays or Round-Trip Time (RTT), lacking the necessary

hop-level fine granularity (e.g., tracing, probing), or rely on

software-based time synchronization that provides insufficient

measurement accuracy (e.g., passport, traditional postcard).

Furthermore, since each critical data stream conforms to the

strict timetable, embedding analytic information into packets

may affect their transmission time, leading to discrepancies

between observed results and actual performance.

We set up the testbed with a switch connecting to two eval-

uation devices and measure the one-hop delay from a device

to the switch. To be specific, probing collects the RTT along

the path of the source device, switch, sink device and then

divide it by 4; others rely on the Network Time Protocol (NTP)

for clock synchronization and send the receiving time back

from the switch to the source device with embedded meta-

data (passport) or customized packet (traditional postcard).

§
4

.1
 C

ro
ss

-C
y

cl
e

 P
o

st
ca

rd
-b

a
se

d

Te
le

m
e

tr
y

 P
ro

to
co

l

§ 4.3 Hardware Design

§ 4.2.1 Flow-Centric

Fault Refinement

§ 4.2.2 Bandwidth-adaptive

Postcard Prioritization

Postcards

Alarm

Wait Postcards

Industrial Network

TSN Scheduling

and Configuration

Control

Packet

Receive Alarm

§ 4.2 Algorithm

Localize Fault?
Y N

Root

Cause

Figure 4. System architecture of TSNCard.

Theoretically, the one-hop delay primarily consists of packet

propagation delay on the network cable and the PHY (physical

layer) processing delay, which typically does not exceed 1µs.

As illustrated in Fig. 3b, probing exhibits an average deviation

of about 92µs, while passport and traditional postcard show

deviations over 160µs. Such a level of inaccuracy in time

measurement is problematic for TSN traffic analysis.

Lessons Learned. To advance effective TSN fault localization,

our investigation reveals three aspects could be enhanced:

(i) According to C1, we can design a new network analysis

paradigm that is able to pinpoint the root cause of the complex

chain of errors, thus facilitating effective and responsive repair

of critical system failures.

(ii) Motivated by C2, the fault localization algorithm should

be adaptive to the bandwidth limitation of particular environ-

ments and ensure no vital information is lost in the process.

(iii) Following C3, we should enable the diagnostic system

to access globally synchronized high-precision time, allowing

them to record each packet’s entering and leaving time.

C. TSNCard: System Goals

Goal 1: Full Coverage on Time-related Misbehavior.

TSNCard should ensure comprehensive data collection and re-

liably identify the root cause of time-related periodic network

issues in all scenarios. This is essential for the effectiveness

of any TSN fault localization system (§V-B).

Goal 2: Light Weight. TSNCard should maintain low band-

width consumption, low data collection time, and avoid dis-

rupting existing critical traffic flows. This allows the diagnos-

tic system to be seamlessly deployed under the constrained

industrial environments (§V-C).

III. SYSTEM OVERVIEW

TSNCard systematically tackles the aforementioned chal-

lenges to achieve reliable fault localization in TSN. As de-

picted in Fig. 4, it comprises the protocol layer for network

telemetry and data collection, the algorithm layer for intel-

ligent data analysis and fault localization, and the hardware

layer for high-precision and seamless postcard generation.

Key Functional Modules.

• Cross-Cycle Postcard-Based Telemetry focuses on efficiently

collecting network diagnostic information. It leverages TSN’s

periodic nature to gather and analyze data over multiple cycles,

reducing bandwidth consumption while maintaining diagnostic

information coverage.

• Flow-Centric Fault Refinement identifies and traces the

misbehavior within network flows. It utilizes the collected

postcards to reconstruct error chains and pinpoint the root

cause of network faults.

• Bandwidth-Adaptive Postcard Prioritization decides whether

each switch should generate postcards based on the available

network bandwidth. It optimizes the balance between localiza-

tion efficiency and network load, ensuring efficient and timely

fault localization.

• In-switch Postcard Generation creates and sends postcards

with high-precision timestamps without interfering with the

transmission of critical traffic. It is a foundational module

to support the smooth operation of TSNCard’s protocol and

algorithm design.

Fig. 4 exhibits the overall workflow of TSNCard. As seen,

there are sensors and industrial devices operating over TSN.

When a critical data stream is timed out, the end devices

will send an alarm to notify TSNCard’s analytic server. The

analytic server then relies on the Bandwidth-Adaptive Postcard

Prioritization algorithm to select switches for postcard collec-

tion. These switches, equipped with TSNCard’s customized

hardware logic, send postcards with transmission timestamps

and critical packet identities to the server. Afterwards, the

server employs the Flow-Centric Fault Refinement algorithm

to analyze this information and try to locate the root cause of

the network issue. Once the root cause is identified, an operator

will be notified to repair malfunctioning devices. Otherwise,

the server instructs the Bandwidth-Adaptive Postcard Priori-

tization module with the next flows or nodes to analyze and

iterate the process until the root cause is localized.

IV. DESIGN AND IMPLEMENTATION

A. Protocol: Postcard-based Telemetry

As explained in §II-B, traditional Ethernet diagnostic tools

lack the ability to localize malfunctioning switches or end

devices in the TSN network. In TSNCard, we propose a

Postcard-based Cross-Cycle Telemetry Protocol dedicated to

localizing broken root switches or end devices in the TSN

network. The automatons in Fig.5 depict the design of this

protocol. The first, as shown in Fig.5a, governs how the

switches collect and upload postcards. If the switch is notified

of enabling debug mode, it timestamps all critical packets’

arrival and departure, i.e., rx and tx. But if not, the switch

only conducts pure packet forwarding. The second one, as

shown in Fig.5b, shows how to localize the root cause on the

analysis server. Once receiving a misbehavior alarm from a

sink end-device, the analysis server enters the diagnosis mode.

The server will localize the first misbehavior on a single flow

and then search all related flows recursively until the root cause

is found in the whole network.

In Cross-Cycle Postcard-based telemetry Protocol, we in-

troduce two modules, i.e., Cross-cycle data fusion and Active

postcard-based telemetry, to overcome the weakness of tradi-

tional Ethernet diagnostic protocols.

Λ

Λ

Λ

Λ

receive background packet

forward packet

receive critical packet

forward packet

receive critical packet

forward packet

upload postcard to server

receive notification of

enabling debug modeΛ receive background packet

forward packet

receive notification of

disabling debug modeΛ

Normal

Mode

Debug

Mode

(a) Automaton on the switch.

Select

Flows

Fault

Refinement

Select

Switches
Wait

Alarms

Wait

Postcards

Is it the

root cause?

receive misbehavior alarm

add current flow into pool

Λ
select flows from pool

for searching

Λ
select and notify

switches on current flows

receive postcards

store postcards for analysis

localize the first fault

on current flowsΛ

otherwise

narrow down the searching

scope on current flows

localize the root cause

of this misbehaviorΛ
otherwise

add related flow into pool

Λ

Λ

(b) Automaton on the analytic server.

Figure 5. Cross-Cycle Postcard-based Telemetry Protocol.

1) Cross-cycle data fusion: Distinguished from traditional

Ethernet, TSN usually serves applications whose traffic has

periodic characteristics and requires strict low latency. As

a result, if some device is misconfigured or broken down,

the misbehavior in this traffic also appears periodically. This

inspires us to propose cross-cycle data fusion. Specifically, it

is unnecessary to snapshot the whole TSN network. The key

characteristics of the time-sensitive flow, i.e., the arrival and

departure times at each hop, are consistent in all cycles after

misbehavior occurs. So in the current cycle, we can inspect

the timestamps of only the traffic that we are currently most

interested in, and check other flows in subsequent cycles. With

the help of cross-cycle data fusion, we can dramatically de-

crease the bandwidth consumption during network telemetry.

In addition, we can also make TSNCard efficient and flexible

under different bandwidth limitations (refer to §IV-B2).

2) Active postcard-based telemetry: We design the TSN

diagnostic protocol based on active postcard telemetry [15].

Benefiting from postcard telemetry, there is no need to modify

the packet structure of critical flows, which means TSNCard

is compatible with existing end-devices in TSN networks in

factories. If a TSNCard switch enables debug mode, it will ac-

tively record the highly precise arrival (rx) and departure(tx)

time on the hardware side (refer to §IV-C). On the software

side, packets in the critical flows of interest are filtered. Then,

rx, tx, and each packet’s identity are packed into a postcard

and sent to the server for further analysis (refer to §IV-B).

The packet identity is a series of values that are invariant

during packet propagation. The analysis server utilizes the

identities to cluster packets together in the same flow. In our

Table II
SEVEN CATEGORIES OF MISBEHAVIOR.

Criterion Misbehavior Category

Ingress-Related
Misbehavior

rx+ T < rxs Early Ingress
rx > rxs + T Late Ingress
rx− rxs > P Periods Late Ingress

Egress-Related
Misbehavior

tx+ T < txs Early Egress
tx > txs + T Late Egress
tx− txs > P Periods Late Egress

Loss Misbehavior No Postcard Packet Loss

implementation, the packet identity contains the source and

destination MAC addresses and the raw packet’s MD5 value.

B. Algorithm: Fault Refinement and Bandwidth Adaptation

Due to the existence of chain of error, there may not be

direct connections between the breakdown switch and misbe-

haved flows. Nevertheless, according to C1 in §II-B, the mis-

behavior is propagated along the flow path and leaves traces.

This inspires us to propose Flow-Centric Fault Refinement

module. It exploits misbehavior traces, which are collected by

postcards, to recover the complete error chain and localize the

breakdown switch, i.e., the root cause. Furthermore, in order

to make TSNCard lightweight enough for the actual product

line in factories, we introduce Bayesian Guided Postcard

Prioritization. It automatically adjusts the postcard collection

strategy according to the bandwidth limitation, balancing the

bandwidth consumption and the fault localization delay.

1) Flow-centric fault refinement.: The misbehavior trace

refers to the inconsistency of the actual packet ar-

rival/departure time with the schedule. As depicted in Ta-

ble II, we classify misbehavior into seven categories. The

second column presents the criteria for the identification of

the misbehavior. The superscript s denotes the scheduled

timestamp. P is the period of this flow while T is the tolerable

deviation between the actual timestamp and the scheduled one.

If the server fails to collect some postcard, it is a Packet

Loss misbehavior. To avoid postcard loss from the switch

to the analytic server, TSNCard conducts collection in three

consecutive cycles. The Packet Loss misbehavior is recognized

when, and only when none of these three are collected.

Flow-centric fault refinement adopts two complementary

phases to tracking the misbehavior comprehensively.

Intra-flow refinement phase. In a single flow, if one switch

misbehaves, there are two scenarios: (i) The misbehavior is

caused by the previous node; (ii) the misbehavior just occurs

on the current switch, that’s to say, the current switch is the

first misbehaved node and all previous nodes behave normally.

In a word, the misbehaved switch could not be the root cause

when there is another misbehaved switch on its upstream. In

the intra-flow refinement phase, we check each switch in flow

f using the criteria in Table II until finding the first misbehaved

switch SW*. We can assert that switch SW* is the cause of

flow f missing deadline.

Inter-flow refinement phase. However, from a global per-

spective, switch SW* may not be the root cause. This is

because the misbehavior, as shown in Fig. 2, may pass

between flows. In the inter-flow refinement phase, we check all

connected flows of flow f to judge whether SW* is the root

cause. If all connected flows meet the deadline and behave

normally, then SW* must be the root cause and needs repair.

Otherwise, go back to the intra-flow refinement phase and

check misbehaved flows and switches recursively.

2) Bandwidth-adaptive postcard prioritization: In the

intra-flow refinement phase, if all postcards of current flows

are collected in one cycle, the bandwidth constraint is sur-

passed. On the other hand, if taking advantage of periodic

characteristics and collecting one postcard each cycle, the

available bandwidth is underutilized and the fault localization

delay will be high. As mentioned before, misbehavior is

transitive, so the misbehaved switches on a specific flow are

continuous. This implies that it is feasible to select several

switches to check and narrow down the scope of the first

misbehaved switch iteratively. A naive greedy strategy is to

prioritize switches with more flows passing through them. This

strategy is somehow reasonable because more pass-through

flows mean a greater likelihood of being impacted, but it fails

to take the topology and flow characteristics into account.

TSNCard introduces bandwidth-adaptive postcard prioriti-

zation to guide the switch selection. We refer to the Naive

Bayes algorithm and design a heuristic selection strategy. As

shown in Alg. 1, the K switches with the largest P (y|x, f)
values are selected (line 4-5), where P (y|x, f) denotes the

probabilities of there is misbehavior on switch y in flow

f under the condition switch x in flow f misbehaves. The

Alg. 2 shows how to calculate P (y|x, f). According to Bayes’

theorem, there is

P (y|x, f) =
P (x|y, f) · P (y, f)

P (x, f)
, (1)

where P (∗, f) denotes the switch ∗ in flow f misbehaves.

Since P (x, f) is constant, we have (line 6 in Alg. 2)

P (y|x, f) ∝ P (x|y, f) · P (y, f). (2)

In Eq.(2), P (y, f) is the prior probability while P (x|y, f) is

the likelihood. In our implementation, we exploit a network

simulator to generate a mass of network operation data and

obtain P (y, f) according to statistics (line 1 in Alg. 2).

P (x|y, f) denotes the probability that the misbehavior on

switch y is transmitted to switch x on flow f . As x and y are

both in the flow f , we can decompose P (x|y, f) as follows

(line 5 in Alg. 2)

P (x|y) = P (x1|y)P (x2|x1) · · ·P (xm|xm−1)P (x|xm), (3)

where all link (xt, xt+1) belong to flow f . For each

P (xt+1|xt), we notice that it has two properties: (1)

P (xt+1|xt) is inversely proportional to D, where D is

the number of flows that pass through link (xt, xt+1). (2)

P (xt+1|xt) ∈ [0, 1]. If D = 1, P (xt+1|xt) = 1. If D → +∞,

P (xt+1|xt) should be relatively small because it is very likely

that the misbehavior could be transmitted to another flow.

In our implementation, we set P (xt+1|xt) = 1 − 0.5(1 −
e−0.5D)) empirically (line 4 in Alg. 2). As a result, the entire

calculation progress of P (y|x, f) is shown in Alg. 2.

ALGORITHM 1: Bandwidth-adaptive postcard prioritization

input : Current flow f , misbehaved switch x, K
output: K switches in f for postcard collection

1 path ← Get all switches from the source of f to switch x;
2 foreach switch y in path do
3 Calculate P (y|x, f)

4 sorted path ← sort path in descending order according to
P (y|x, f);

5 K Switches← the first K switches in sorted path;
6 return K Switches

ALGORITHM 2: Calaculate P (y|x, f)

input : Current flow f , switch y, x
output: P (y|x, f)

1 Obtain P (y, f) according to statistics;
2 P (x|y, f)← 1;
3 foreach link (s, t) in path from y to x in flow f do

4 P (s|t)← 1− 0.5(1− e−0.5Ds,t);
5 P (x|y, f)← P (x|y, f) · P (s|t);

6 P (y|x, f)← P (x|y, f) · P (y|f);
7 return P (y|x, f)

C. Hardware: High-precision In-switch Postcard Generation

As demonstrated in Fig. 6(a), an intuitive approach for

timestamping is to implement external timestamper devices

and insert them into network cables. They forward the data

directly between input/output ports and utilize the 802.1AS

SYNC messages passing for time synchronization. When

critical flows pass through a timestamper, they can record the

transmission time of the packet and generate corresponding

postcards. However, this method has two downsides: (1)

The PHY (Physical Layer) processing on the timestamper

introduces additional packet transmission latency. (2) It neces-

sitates extra devices attached to each network cable, leading

to higher deployment costs. Accordingly, in TSNCard, we

choose the in-switch postcard design, integrating the hardware

implementation into existing TSN switch’s logic as a plugin. In

this way, TSNCard can access the local high-precision clock

of each switch, and will not introduce additional PHY pro-

cessing delay. Specifically, TSNCard leverages a NetFPGA-

based TSN switch architecture [21], [22] and the Xilinx Zynq

platform. As shown in Fig. 6(b), it consists of a hardware

PL (Programmable Logic) part and a software PS (Processing

System) part. The PL records the transmission and packet

identity and uploads them to PS, while the PS packages and

sends postcards to the analytic server. The core design of

TSNCard’s hardware implementation is as follows:

Timestamp Modules. The timestamp modules are supposed

to measure the precise timing a critical data frame arrives

at (rx) and departure from (tx) the TSN switch. The rx

timestamp module is positioned right after the MAC (Media

Access Control) and before its buffering FIFO. It records the

64bit rx nanosecond-level timestamp when the first byte of

each packet is decoded from MAC. Similarly, the tx timestamp

module continuously monitors the mirrored output data stream

and records the timestamp when the first byte of a packet is

successfully sent.

External TS

External TS

… PS
(Software)

PL
(Hardware)

Telemetry

Protocol

Time Sync.

Gate

Control

…

…𝒓𝒓𝒓𝒓 TS
Input

Port

N

Switch Datapath

FIFO

MAC

𝑟𝑟𝑟𝑟

…

…

Mirror

MAC𝒕𝒕𝒓𝒓 TS

Packet

Summary

Postcard

Out.

Port

N

(b) In-Switch Postcard (Ours)(a) External TS

𝑟𝑟𝑟𝑟
𝑟𝑟𝑟𝑟𝑡𝑡𝑟𝑟

In
p

u
t

P
o

rt
 1

O
u

tp
u

t
P

o
rt

 1

…

… …

Figure 6. Illustration of external timestamper and TSNCard’s in-switch
postcard hardware design.

Frame Mirroring Mechanism. The frame mirroring mech-

anism is designed to capture the critical traffic information

without hindering its transmission. It is placed after the trans-

mission selection module (containing the TSN cyclical control

gates) of each output port. The module mirrors the AXI-stream

signal into two paths: the main path directly connects to the

port’s PHY, while the other path copies the data byte-by-byte

into a packet-mode buffer FIFO (First-In-First-Out queue),

strictly following the state machine transition process of the

main signal. In addition, the module incorporates a FIFO time

stamp rx and a tx, each with 64 bit width. When the first

byte of a mirrored data frame is stored in the buffer, the

accompanying rx signal is pushed into the rx FIFO, and the

current timestamp is pushed into the tx FIFO. After the whole

packet is stored in the buffer FIFO, the packet content, rx and

tx timestamps, will pop out from the FIFO and be ready for

transmission to PS.

Following the trend of in-network computing, major net-

work device vendors nowadays are actively embedding their

switches with additional programmable logic. For example,

Kontron’s PCIE-0400-TSN NIC contains an Altera Cyclone

v5 FPGA [23], Intel Tofino switch contains a programmable

ASIC chip supporting P4 language [24]. These designs enable

the end users to get more control over network switch’s

operation logic. Given the modular design and validated per-

formance of TSNCard, integrating it into these commercial

TSN switches would require minimal redevelopment effort.

V. EVALUATION

A. Experimental Methodology

Testbed setup. We integrate TSNCard’s hardware design into

the a FPGA-based TSN switch on top of the Xilinx Zynq

platform [18], and run the analytic algorithm on a server

equipped with a 36-core Intel Core i9-10980XE@3.00GHz

and 128GB RAM. As depicted in Fig. 7a and Fig. 8a, we

set up two testbeds with different topologies, i.e., Ring6 and

A380. A380 is a simplified topology of the control network

used on Airbus A380 [25], while Ring6 is popular in industrial

networking settings [26]. On each testbed, we stochastically

generate several critical flows with a period of 1ms. Each

flow’s deadline is between 50 and 200µs. We model the TSN

scheduling problem as a Satisfiability Modulo Theory (SMT)

and solve it with a public Z3-solver [27].

Simulation setup. In addition to physical testbeds, we also

conduct comprehensive simulation evaluations with large-scale

network topologies based on OMNeT++ and INET Frame-

work [28], [29]. We use the Barabási–Albert model [30] to

generate network topologies with 30 TSN devices and 20 TSN

switches. Specifically, each time a new switch is added to

the generated network. Each new switch is connected to m

existing switches with a probability that is proportional to the

number of links that existing switches already have. For the

devices, each of them is randomly connected to a switch.

Errors in TSN switches. In our evaluations, we focus on the

following three kinds of errors in TSN switches:

• Incomplete Protocol Support. Commercial TSN products

may not fully implement or comply with the complex and

numerous TSN standards, leading to operational discrepancies.

To mimic the incomplete support of the guard band mechanism

in IEEE 802.1Qbv [2], we intentionally delay the frame

transmission time in our experiments.

• Network Misconfiguration. It is very error-prone to config-

ure the network switches, especially by hand. We deliberately

modify the Gate Control List (GCL) to simulate such network

configuration errors.

• Hardware Logic flaws. Hardware designs are not always

trustworthy. Sometimes commercial devices may overlook

certain corner cases, resulting in imperceptible hardware logic

flows. We modify the logic of the egress queue on the specific

switch’s output port to emulate these hardware bugs.

We refer to the above errors as Packet, Gate, and Queue,

respectively.

Metrics. We first use success rate, the rate TSNCard localizes

the breakdown switches successfully, to evaluate the overall

performance. We further measure the bandwidth consumption

and localization latency. Since the computation latency of the

fault refinement algorithm is relatively small and negligible,

we only take the postcard collection latency into account.

lt, the collection latency at cycle t, is measured at 1Mbps

bandwidth. The final total postcard collection latency L is

calculated as follows

L =
∑

max (lt, P) . (4)

Dataset for Bayes algorithm. In order to calculate the prior

probability in bandwidth-adaptive postcard prioritization, we

generate a large amount of traffic data using the network

simulator OMNeT++. Specifically, for every flow schedule in

each topology, we generate thousands of sets of network traffic

data and use them to statistically compute P (y, f).

B. Overall Performance

Table III displays TSNCard’s success rate of localizing

the breakdown switch. We conduct testbed experiments on

Ring6 and A380 topologies respectively. On each topology, we

generate 10∼30 flows and randomly add errors in one of the

switches. We also conduct simulation experiments on Random

switch device

(a) Topology

10 15 20 25 30
of flows

103

104

Ba
nd

wi
dt

h
Us

ag
e(

Kb
ps

) Ours
Vanilla Postcard

(b) Bandwidth Usage

10 15 20 25 30
of flows

0

10

20

30

40

50

60

70

La
te

nc
y(

m
s)

Ours
Vanilla Postcard

(c) Postcard Collection latency
Figure 7. Performance on Ring6

switch device

(a) Topology

10 15 20 25 30
of flows

103

104

Ba
nd

wi
dt

h
Us

ag
e(

Kb
ps

) Ours
Vanilla Postcard

(b) Bandwidth Usage

10 15 20 25 30
of flows

0

10

20

30

40

50

60

70

La
te

nc
y(

m
s)

Ours
Vanilla Postcard

(c) Postcard Collection latency

Figure 8. Performance on A380

Table III
SUCCESS RATE OF ROOT CAUSE LOCALIZATION.

Topology #Flows
#Cases

Success Rate
Total Queue Gate Packet

Ring6

10 1185 147 326 712 100%
15 1337 197 267 873 100%
20 1296 131 262 903 100%
25 1209 146 328 735 100%
30 1186 164 200 822 100%

A380

10 1248 198 182 868 100%
15 1285 158 379 748 100%
20 1373 227 345 801 100%
25 1249 212 318 719 100%
30 1206 192 330 684 100%

Random

50 1242 184 255 803 100%
100 1346 154 376 816 100%
150 1285 208 421 656 100%
200 1377 171 359 847 100%

topology and generate 50∼200 flows. In every configuration,

over 1000 tests are conducted. As shown in Table III, TSNCard

successfully localizes the switch with errors in all test cases,

demonstrating the effectiveness of TSNCard.

Fig. 7b and Fig. 8b illustrate the bandwidth usage of

TSNCard and vanilla postcard, which collects all postcards in

the TSN network at one time. In all cases, TSNCard consumes

less than 1Mbps bandwidth, while the vanilla postcard con-

sumes about 10 times more bandwidth and the consumption

increases significantly with the number of flows. Moreover,

in Fig. 8b, TSNCard’s bandwidth consumption of 10 flows is

larger than that of 15 flows. The rationale is that the generated

flows in the 15-flow case are relatively short and have less

interdependence. TSNCard can localize the breakdown switch

with fewer postcards.

Fig. 7c and Fig. 8c depict the postcard collection latency

of TSNCard and vanilla postcard. TSNCard exhibits a stable

latency of around 10ms, largely unaffected by traffic scale.

On the contrary, the vanilla postcard already experiences a

latency of around 20ms with 10 flows, reaching approximately

60ms with 30 flows. TSNCard excels a 50∼83% improvement

compared to the vanilla postcard.

C. Component Study

Bandwidth Adaptive postcard prioritization. First, we con-

duct simulation experiments to validate the importance of the

bandwidth adaption module. In this experiment, we remove the

bandwidth adaptation module from TSNCard and collect all

postcards on current flows in one cycle. As depicted in Fig. 9a,

TSNCard’s bandwidth usage is always no more than 1Mbps,

while the baseline, i.e., Ours w/o bandwidth adaptation, con-

sumes more bandwidth because it collects more postcards.

Thanks to TSNCard’s cross-cycle mechanism, the bandwidth

consumption of the baseline is bounded even when the number

of flows continues to increase. As for Fig. 9b, TSNCard

completes the postcard collection within 15ms, while the

baseline takes slightly more, about 17 ms. Furthermore, when

the number of flows≥100, we find that the latency hardly

changes, which is due to the fact that the length of the error

chain does not grow with the number of flows. In fact, since

flows are randomly generated, the vast majority of chains of

errors have a length of 2 to 4.

Second, we dive into Bayes-guided postcard prioritization

module. We compare it with three postcard selection strategies

• Random: Select K switches on the current flows randomly.

• Uniform: Select K switches on the current flows uniformly.

• Greedy: Select K switches where most flows pass on the

current flows.

As shown in Fig. 10, we measured the data collection

latency of these methods at different bandwidths. The latency

of Bayes-guided postcard prioritization is always the lowest

compared to the other three strategies. Moreover, it is notable

that the latency of the four methods becomes almost the same

50 100 150 200
of flows

0

250

500

750

1000

1250

1500
Ba

nd
wi

dt
h(

kb
ps

)

Ours w/ bandwidth adaption
Ours w/o bandwidth adaption

(a) Bandwidth usage

50 100 150 200
of flows

0

5

10

15

20

25

La
te

nc
y(

m
s)

Ours w/ bandwidth adaption
Ours w/o bandwidth adaption

(b) Postcard Collection Latency

Figure 9. Performance on Random Topology

500 750 1000 1250 1500 1750 2000
Bandwidth(Kbps)

10

15

20

25

30

La
te
nc
y(
m
s)

Bayes
Uniform
Greedy
Random

Figure 10. Performance on Different Searching
Methods

10 1 100 101 102

Latency Measurement(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

Ours w/ Timestamp Modules
Ours w/o Timestamp Modules

Figure 11. Tracing Precision

LUT BRAM FF
Resource Species

0

20

40

60

80

100

Re
so

ur
ce

 U
tili

za
tio

n(
%

) Ours
Vanilla Switch

Figure 12. Resource Utilization

25.0 27.5 30.0 32.5 35.0 37.5 40.0
Latency(s)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F Ours

Vanilla Switch
External TS

Figure 13. Packet Forwarding

when the bandwidth is larger than 1.5Mbps, This is because

the bandwidth is large enough to collect all postcards of the

current flows in one cycle.

Timestamp Modules. We remove Timestamp Modules and

obtain rx and tx of packets from the software side. Fig. 11

illustrates the packet propagation delay measured by both

methods. It is noticed that, compared to obtaining timestamps

from the software, the accuracy of TSNCard is improved by

two orders of magnitude, and the jitter is also significantly

reduced. This suggests that Timestamp modules are essential

for TSNCard to monitor and diagnose the TSN network.

D. Overhead Study

Hardware resource utilization. Fig. 12 illustrates TSNCard’s

utilization of Look Up Table (LUT), Block RAM (BRAM)

and Flip Flops (FF) on FPGA. Compared to the original

TSN switch, TSNCard uses around 8% more LUT, 15%

more BRAM and 7% more FF. The result demonstrates that

TSNCard demands few hardware resources and could be

integrated into traditional TSN switches with little additional

hardware cost.

Packet Forwarding Delay. We compare the packet forwarding

delay of TSNCard switch to that of the vanilla TSN switch and

External TS (refer to Fig. 6(a)). Since the propagation delay is

constant, we send packets between two TSN devices connected

by a switch and measure the end-to-end delay. The results are

shown in Fig. 13. The packet forward delay receives little

impact from the hardware modules introduced by TSNCard.

This implies that TSNCard provides an almost imperceptible

approach to monitoring critical TSN traffic. On the other hand,

the delay of External TS increases significantly, so this class

of measurement tools is not well suited for TSN monitoring.

VI. RELATED WORK

Probing implies sending test packets through the network

actively to gather information on network conditions such as

latency, packet loss, and throughput. Classic tools, including

Ping [5] and Traceroute [6], are essential for diagnosing

connectivity issues and understanding the network topology.

Pingmesh [7] exploits probing methods to measure network

latency in large-scale data centers, identifying whether issues

are network-related. Time Series Latency Probes (TSLP) [8]

represents an advanced application of probing, focusing specif-

ically on detecting congestion on inter-domain links.

Tracing in network diagnostics involves tracking the path

of packets through the network to identify bottlenecks, perfor-

mance issues, and routing paths. Many trace-based tools, such

as Tcpdump [9] and Wireshark [10], are crucial for network

troubleshooting and analysis. Everflow [31] uses a packet

filtering mechanism to trace specific packets across network

components, aiding in fault identification and resolution in data

center networks. dShark [11], another tracing tool, focuses on

distributed packet capture in the network to diagnose network

problems, offering deep insight into packet behavior between

different network hops.

In-band network telemetry (INT) [12] is an emerging

technique for collection and analysis of network statistics.

Distinguished from traditional diagnostic techniques, it inserts

metadata into packets at each hop and collects them for

analysis. It is also named passport because its process is

similar to the stamping of passports. In order to reduce the

telemetry data added to each packet, PINT [13] efficiently

encodes the requested data across multiple packets. Moreover,

TCP-INT [14] enhances INT by making telemetry data directly

available to end-hosts, offering a more integrated perspective

on network and application performance.

Postcard telemetry [15] generates and sends packet meta-

data to the analytic server for packets traversing them, re-

sembling a post office sending postcards for each traveler.

Benefiting from the postcard mechanism, network telemetry

protocols are able to collect metadata without interference

with the packet forwarding time. HyperSight [16] incorpo-

rates a declarative query language and a Bloom Filter Queue

(BFQ) algorithm for behavior-level network monitoring. Net-

Sight [17] is an extensible platform based on the postcard

mechanism that captures packet histories, providing an in-

depth view of network traffic and helping to efficiently trou-

bleshoot the network.

Besides, there is some preliminary work focusing on the

diagnostics of Time-Sensitive Networking. TSN-Insight [3]

enables the computation of the clock offset between each node

and the master node, marking a critical step towards monitor-

ing time-synchronization issues. Albeit inspiring, it ignores

the issue of inter-node transmission delay. TSNPeeper [4]

proposes a theoretical model that stores the TSN forwarding

misbehavior on switches and utilizes active probing packets to

collect them for the first time. However, it cannot localize the

root cause in the potential chain of errors.

VII. CONCLUSION

In this work, we design and implement TSNCard, a pioneer-

ing network diagnostic system for Time-Sensitive Network-

ing. TSNCard represents a significant leap forward in TSN

diagnostic capabilities, integrating advanced telemetry proto-

cols, fault refinement algorithms, and cutting-edge hardware

design. On this basis, TSNCard enables localizing network

faults in bandwidth-constrained TSN applications quickly and

accurately. Extensive evaluations on simulation and testbeds

demonstrate TSNCard’s superior performance. We envision

TSNCard as a critical step in advancing TSN development.

VIII. ACKNOWLEDGMENTS

This work is supported in part by the National Key Research

Plan under grant No. 2021YFB2900100, the NSFC under grant

No. 62302259 and No. 62302254.

REFERENCES

[1] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business & information systems engineering, vol. 6, no. 4, pp.
239–242, 2014.

[2] Enhancements for Scheduled Traffic, IEEE Std. 802.1Qbv, 2015.
[3] T. Bu, Y. Yang, X. Yang, W. Quan, and Z. Sun, “TSN-Insight: An

Efficient Network Monitor for TSN Networks,” in Sigcomm Poster,
2019.

[4] C. Zhang, B. Zhou, Z. Tian, L. Cheng, Y. Liu, H. Zhang, S. Chen,
Y. Wan, W. Xu, T. Pan, Y. Xu, Y. Wang, H. Zhu, and B. Liu, “TSN-
Peeper: An Efficient Traffic Monitor in Time-Sensitive Networking,” in
2022 IEEE 30th International Conference on Network Protocols (ICNP),
Oct. 2022, pp. 1–11.

[5] J. Postel, “Internet Control Message Protocol,” Internet Engineering Task
Force, Request for Comments RFC 792, Sep. 1981.

[6] G. S. Malkin, “Traceroute using an ip option,” Internet Engineering Task
Force, Request for Comments RFC 1393, Jan. 1993.

[7] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh: A
Large-Scale System for Data Center Network Latency Measurement and
Analysis,” ACM SIGCOMM Computer Communication Review, vol. 45,
no. 4, pp. 139–152, Aug. 2015.

[8] A. Dhamdhere, D. D. Clark, A. Gamero-Garrido, M. Luckie, R. K. P.
Mok, G. Akiwate, K. Gogia, V. Bajpai, A. C. Snoeren, and K. Claffy,
“Inferring persistent interdomain congestion,” in Proceedings of the 2018

Conference of the ACM Special Interest Group on Data Communication,
ser. SIGCOMM ’18. New York, NY, USA: ACM, Aug. 2018, pp. 1–15.

[9] “Tcpdump and libpcap,” Nov. 2023. [Online]. Available:
https://www.tcpdump.org/index.html

[10] Wireshark, “The world’s most popular network protocol analyzer,” Nov.
2023. [Online]. Available: https://www.wireshark.org/

[11] D. Yu, Y. Zhu, B. Arzani, R. Fonseca, T. Zhang, K. Deng, and L. Yuan,
“{dShark}: A General, Easy to Program and Scalable Framework for
Analyzing In-network Packet Traces,” in 16th USENIX Symposium on

Networked Systems Design and Implementation (NSDI 19), 2019, pp.
207–220.

[12] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, L. J. Wobker et al.,
“In-band network telemetry via programmable dataplanes,” in ACM

SIGCOMM, vol. 15, 2015, pp. 1–2.
[13] R. Ben Basat, S. Ramanathan, Y. Li, G. Antichi, M. Yu, and M. Mitzen-

macher, “PINT: Probabilistic In-band Network Telemetry,” in Proceed-

ings of the Annual Conference of the ACM Special Interest Group on

Data Communication on the Applications, Technologies, Architectures,

and Protocols for Computer Communication, ser. SIGCOMM ’20. New
York, NY, USA: ACM, Jul. 2020, pp. 662–680.

[14] G. Jereczek, T. Jepsen, S. Wass, B. Pujari, J. Zhen, and J. Lee, “Tcp-int:
lightweight network telemetry with tcp transport,” in Proceedings of the

SIGCOMM’22 Poster and Demo Sessions, 2022, pp. 58–60.
[15] H. Song, G. Mirsky, T. Zhou, Z. Li, T. Graf, G. Mishra, J. Shin, and

K. Lee, “On-Path Telemetry using Packet Marking to Trigger Dedicated
OAM Packets,” Internet Engineering Task Force, Internet Draft draft-
song-ippm-postcard-based-telemetry-16, Jun. 2023.

[16] Y. Zhou, J. Bi, T. Yang, K. Gao, J. Cao, D. Zhang, Y. Wang, and
C. Zhang, “HyperSight: Towards Scalable, High-Coverage, and Dynamic
Network Monitoring Queries,” IEEE Journal on Selected Areas in

Communications, vol. 38, no. 6, pp. 1147–1160, Jun. 2020.
[17] N. Handigol, B. Heller, V. Jeyakumar, D. Mazieres, and N. McKeown,

“I Know What Your Packet Did Last Hop: Using Packet Histories to
Troubleshoot Networks,” in Proceedings of 11th USENIX Symposium on

Networked Systems Design and Implementation (NSDI ’14). Seattle,
WA, USA: USENIX Association, Apr. 2014.

[18] Xilinx. (2021, Jul.) Socs with hardware and software programma-
bility. [Online]. Available: https://www.xilinx.com/products/silicon-
devices/soc/zynq-7000.html

[19] Timing and Synchronization for Time-Sensitive Applications, IEEE Std.
802.1AS, 2020.

[20] E. Li, F. He, Q. Li, and H. Xiong, “Bandwidth Allocation of Stream-
Reservation Traffic in TSN,” IEEE Transactions on Network and Service

Management, vol. 19, no. 1, pp. 741–755, Mar. 2022.
[21] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,

“NetFPGA SUME: Toward 100 Gbps as Research Commodity,” IEEE

Micro, vol. 34, no. 5, pp. 32–41, Sep. 2014.
[22] Z. Yang, Y. Zhao, F. Dang, X. He, J. Wu, H. Cao, Z. Wang, and Y. Liu,

“CaaS: Enabling Control-as-a-Service for Time-Sensitive Networking,”
in IEEE INFOCOM 2023 - IEEE Conference on Computer Communi-

cations. New York City, NY, USA: IEEE, May 2023, pp. 1–10.
[23] K. Group. (2023) Pcie-0400-tsn network interface card. [Online].

Available: https://www.kontron.com/en/products/pcie-0400-tsn-network-
interface-card/p151637

[24] I. Corporation. (2023) Intel® tofino™ 2. [Online]. Available:
https://www.intel.com/content/www/us/en/products/details/network-
io/intelligent-fabric-processors/tofino-2.html

[25] F. Boulanger, D. Marcadet, M. Rayrole, S. Taha, and B. Valiron, “A
time synchronization protocol for a664-p7,” in 2018 IEEE/AIAA 37th

Digital Avionics Systems Conference (DASC). IEEE, 2018, pp. 1–9.
[26] P. N. America. (2019) Industrial topology options

and profinet. [Online]. Available: https://us.profinet.com/wp-
content/uploads/2019/08/Topology.pdf

[27] Z3Prover. (2021) Github repository of z3prover. [Online]. Available:
https://github.com/Z3Prover/z3

[28] A. Varga, “OMNeT++,” in Modeling and Tools for Network Simulation,
K. Wehrle, M. Güneş, and J. Gross, Eds. Berlin, Heidelberg: Springer
Berlin Heidelberg, 2010, pp. 35–59.

[29] “INET Framework for OMNEST/OMNeT++,” Nov. 2023. [Online].
Available: https://github.com/inet-framework/inet

[30] A.-L. Barabási and R. Albert, “Emergence of scaling in random net-
works,” Science, vol. 286, no. 5439, pp. 509–512, 1999.

[31] Y. Zhu, N. Kang, J. Cao, A. Greenberg, G. Lu, R. Mahajan, D. Maltz,
L. Yuan, M. Zhang, B. Y. Zhao, and H. Zheng, “Packet-Level Telemetry
in Large Datacenter Networks,” in Proceedings of the 2015 ACM

Conference on Special Interest Group on Data Communication. London
United Kingdom: ACM, Aug. 2015, pp. 479–491.

