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Abstract—Flexible manufacturing is one of the core goals of
Industry 4.0 and brings new challenges to current industrial
control systems. Our detailed field study on auto glass industry
revealed that existing production lines are laborious to reconfig-
ure, difficult to upscale, and costly to upgrade during production
switching. Such inflexibility arises from the tight coupling of
devices, controllers, and control tasks. In this work, we propose
a new architecture for industrial control systems named Control-
as-a-Service (CaaS). CaaS transfers and distributes control tasks
from dedicated controllers into Time-Sensitive Networking (TSN)
switches. By combining control and transmission functions in
switches, CaaS virtualizes the industrial TSN network to one
Programmable Logic Controller (PLC). We propose a set of
techniques that realize end-to-end determinism for in-network
industrial control and a joint task and traffic scheduling algo-
rithm. We evaluate the performance of CaaS on testbeds based
on real-world networked control systems. The results show that
the idea of CaaS is feasible and effective, and CaaS achieves
absolute packet delivery, 42-45% lower latency, and three orders
of magnitude lower jitter. We believe CaaS is a meaningful
step towards the distribution, virtualization, and servitization of
industrial control.

Index Terms—Time-Sensitive Networking, Industrial Network

I. INTRODUCTION

Control systems are the brains of industrial automation.

They underpin the success of modern industries and play a

critical role in increasing production efficiency. Programmable

Logic Controller (PLC) is the most common controller used in

industrial systems [1], which has achieved huge success. Major

PLC manufacturers include Siemens, Rockwell Automation,

Mitsubishi Electric, etc. High-end PLCs are usually much

more expensive than other computing devices with similar

computation resources.

Recent years have witnessed the paradigm shift of industries

towards Industry 4.0, also known as Industrial Internet, intelli-

gent manufacturing, or new industrial revolution depending on

the industrial upgrading policy of different countries. In this

new paradigm, flexible manufacturing is among the core goals

and brings new challenges to current PLC control systems.

First, the production order patterns change greatly. Manufac-

turers are seeing more small production orders with more

diverse specs. This forces the manufacturers to reconfigure

production lines more frequently than ever before. Second, the

number of connected devices continues to increase. In 2020,
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there are 17.7 billion connected industrial devices globally. It is

estimated that this number will double by 2025, reaching 36.8

billion [2]. Last but not least, control tasks are evolving from

simple relay logic to complex machine learning models. Tasks

like defect detection have already benefited from computer

vision to reduce operational costs and improve accuracy [3].

We conduct a field study on the auto glass industry, which

is in urgent need of flexible manufacturing due to the changing

order patterns from its customers. The limitations of cur-

rent PLC control systems are three-fold: (1) laborious to
reconfigure a production line. Sensor and actuator devices

are hard-wired to PLC as discrete or analog IO. Engineers

have to manually change the connections between devices and

controllers and upload new control tasks to every PLC. (2)

difficult to upscale an industrial control system. PLC works

in a centralized way and every IO device needs to be directly

connected to it. The number of connected devices is also

constrained by the number of IO ports. (3) costly to upgrade
an existing control system. Since tasks and controllers are

tightly bound, when a PLC does not satisfy a new control task,

workers have to stop the production and replace it with a more

powerful but expensive one, which causes extra downtime and

costs. More details are described in the next section. The root

cause of the above limitations is the binding among devices,

controllers, and tasks. This tight coupling creates difficulties

in reconfiguration, upscaling, and upgrade of a control system.

In the past decade, new industrial communication technolo-

gies have been developing rapidly, such as PROFINET [4],

POWERLINK [5], and Time-Sensitive Networking (TSN) [6].

Among them, TSN is widely recognized as the most promising

technology for the next generation industrial networks. A

number of major industrial technology companies are pushing

the development of TSN technology, such as Cisco, Marvell,

and NXP [7]. These technologies solve the problem of deter-

ministic data transmission over Ethernet. Nevertheless, they do

not aim at the flexibility issues of control systems discussed

above.

In this work, we propose a new architecture for industrial

control systems named Control-as-a-Service (CaaS), which

transfers and distributes control tasks from dedicated con-

trollers into network switches. By combining control and trans-

mission functions in network switches, CaaS turns a network

of switches into one virtual PLC, laying the foundations of

the distribution, virtualization, and servitization of industrial



Figure 1: Traditional PLC-based control systems and Control-as-a-Service (CaaS) control systems.

control. In the design of CaaS, control is a service to be called

and the details of the control mechanism are hidden from

callers. For example, a device is “connected and controlled”

without knowing where the controllers are; and a control task

can run efficiently and deterministically without knowing in

which controller and how it is executed. Fig. 1 compares

traditional control systems and CaaS.

To implement CaaS, we are facing two main challenges:

(1) How to realize in-switch deterministic industrial control.
We propose a co-design of hardware and software for CaaS

switch, implementing both data transmission and task execu-

tion functions. Specifically, we propose Packetized PLC IO
to decouple the physical IO of devices and logical IO of

controllers. Additionally, determinism is a fundamental re-

quirement of industrial control. We present several techniques

to ensure the end-to-end determinism, including Dual DMA,

Core Isolation, and Global-Time-Aware Execution. (2) How
to schedule the data transmission and task execution in CaaS.
Prior work on industrial network scheduling only considers

data transmission, assuming that the schedule of task execution

is determined in advance. In CaaS, we propose Task & Traffic
Joint Scheduling Algorithm, which models the relationship

between tasks and traffic flows with our proposed flow-task

dependency constraints.

The contributions of CaaS are as follows:

• To the best of our knowledge, CaaS is the first design that

virtualizes the industrial network as one controller, which

realizes the distribution, virtualization, and servitization

of industrial control.

• We propose several techniques in the design and im-

plementation of CaaS: (1) Packetized PLC IO, which

eliminates the need to hard-wire IO devices to PLCs and

lays the basis for the flexible arrangements of control

tasks. (2) A set of techniques, which ensure end-to-end

determinism, including both computation determinism

and transmission determinism. (3) A joint scheduling al-

gorithm, which for the first time considers the scheduling

of task execution and traffic transmission at the same

time.

• We evaluate the performance of CaaS on testbeds based

on real-world networked control systems. The results

show that the idea of CaaS is feasible and effective, and

CaaS achieves absolute packet delivery, 42-45% lower

latency, and three orders of magnitude lower jitter on all

three testbeds.

• We make two contributions to the community: (1) We

provide a qualitative and quantitative field study about

the challenges of flexible production in a typical manu-

facturing industry, which helps to uncover new research

issues on industrial networks for the community. (2) We

make our CaaS implementation publicly available along

with the Ziggo project1. CaaS can serve as a platform for

the research about industrial control networks and also a

toolkit for the implementation of deterministic systems.

In the rest of the paper, we introduce the motivating field

study and some background in Sec. II. Then we overview

CaaS in Sec. III and present its design in Sec. IV and Sec. V.

After describing the implementation in Sec. VI, we evaluate

the performance of CaaS in Sec. VII. At last, we discuss the

related work in Sec. VIII and conclude the paper in Sec. IX.

II. BACKGROUND AND MOTIVATION

A. Field Study

We begin with a field study on the auto glass industry. With

the diversification and personalization of customer require-

ments, the auto glass industry is in urgent need of flexible

manufacturing. We conducted a field study at one of the

world’s major auto glass factories (anonymity due to blind

review). For the respondent factory, orders from automakers

are shifting from large orders of a few specifications towards

modest orders of various specifications. The CDF of each

spec’s production is depicted in Fig. 2. Over 79.7% are

below 1,000 pieces. The change of order patterns urges the

respondent company to embrace flexible manufacturing.

Specifically, we highlight three shortcomings of the current

control system in light of flexible production.

Laborious to reconfigure: One production line has to

prepare to manufacture more specs of glass than previously,

necessitating frequent production switching. As summarized

in Table I, the downtime of production switching results in

24% production reduction, the majority of which is attributable

to the reconfiguration of control systems (e.g., altering the

connections between devices and PLCs and uploading new

control tasks to PLCs) and pilot run.

Difficult to upscale: Due to the upgrade of their own

products, carmakers often require the respondent factory to

introduce new advanced inspections in glass production. As

illustrated in Table II, six inspection devices were installed at

various stages over the last few years. Installing new devices,

1Ziggo project: http://tns.thss.tsinghua.edu.cn/ziggo/



Table I: Production line switching.

Switch time (min)
Switch

frequency
Production
reductionChange

mold
Reconfig.

& pilot run

10 40 6-8/day 24%

Figure 2: CDF of production per spec. Figure 3: PLC and LAD.

Table II: Production line upgrade.

Preprocessing Printing
Quality
control

# new devices 3 1 2

New tasks
Surface ins.1

Edge ins.
Size ins.

Printing ins.
Curvature ins.

Appearance ins.

Computation
Arithmetic,

CV, PID
CV

Arithmetic,
CV

1 inspection

however, is challenging for existing control systems. PLCs are

centralized in their operation, and devices must be directly

connected to them.

Costly to upgrade: As illustrated in the bottom row of

Table II, the complexity of control tasks continues to increase

as a result of technique advancements such as computer vision-

based defect detection [3]. Due to the binding between tasks

and controllers, PLCs that are unable to meet the requirements

of the upgraded control tasks must be replaced with more

powerful and expensive ones, despite the fact that some field-

installed PLCs may have redundant computation resources.

The root cause of the aforementioned issues is the binding

among devices, controllers, and tasks, which creates compli-

cations during reconfiguration, upscaling, or upgrade of an

existing industrial control system.

B. PLC and LAD

Invented in the 1960s [8], PLC has grown to become the

most widely used industrial control technology. A PLC exe-

cutes control tasks periodically. Each execution cycle contains

three stages: input scan, logic execution, and output writing.

The primary programming language of PLCs is Ladder Logic

(LAD), which resembles electrical diagrams and is defined in

IEC 61131-3 [9]. Fig. 3 depicts a PLC running an LAD pro-

gram. The PLC reads temperature data from the thermometer

during each execution cycle. After that, a comparator circuit

is used in the LAD program to compare the input value to

65 Celsius and determine the output value. Finally, the output

value is written out to control the furnace’s on/off operation.

C. TSN

TSN is a deterministic data transmission technique that is

integrated into standard Ethernet. Fig. 4 illustrates two major

Figure 4: Standard Ethernet switch and TSN switch.

Figure 5: A working example of CaaS.

differences between an Ethernet switch and a TSN switch.

First, TSN switches share a common sense of time, guaran-

teed by the time synchronization protocol defined by IEEE

802.1AS [10]. Second, standard Ethernet switches transmit

data as long as no higher-priority packets are waiting. IEEE

802.1Qbv [11] enables TSN switches to reserve dedicated

time slots for critical traffic, such as industrial control data.

The reserved slots are specified by a schedule called the

Gate Control List (GCL) contained within TSN switches.

Centralized Network Configuration (CNC) is used to manage

a TSN network, as defined in IEEE 802.1Qcc [12]. CNC

generates a global schedule that specifies when data traffic

should pass through each network link. Then CNC distributes

the associated schedule, i.e., GCL, to each TSN switch.

III. OVERVIEW

Due to the complexity of the design of CaaS, we first

use a working example to demonstrate how CaaS works in

Sec. III-A, putting aside technical details. Then we introduce

the architecture of CaaS in Sec. III-B.



Figure 6: Overview of CaaS.

A. Working Example

As illustrated in Fig. 5, a typical industrial production line

is based on a mechanical system that sequentially moves

products from one device to the next, which may include both

sensor and actuator devices. In contrast to traditional control

systems, the CaaS system depicted in Fig. 5 makes use of

CaaS switches to connect all devices into a single network that

functions as a virtual PLC. Each network-connected device

acts as an I/O device for this virtual PLC. Additionally, a

CaaS CNC is connected to the network. Unlike TSN CNC,

CaaS CNC not only schedules traffic transmission but also

task execution. Engineers program CaaS CNC using ladder

logic, just as they do with physical PLCs.

Initially, there are two tasks in this example as specified

in Fig. 5. CaaS CNC schedules (1) where (in which PLC)

and when tasks are executed, and (2) the corresponding data

transmission over network links. Task 1 is assigned to CaaS

switch SW2, while Task 2 is assigned to SW3. Simultaneously,

the schedule for data transmission along the links is also

synthesized and deployed to CaaS switches.

Additionally, Fig. 5 depicts a scenario in which a new sensor

SD3 is integrated into the production line. A new task is also

added as Task 3. At the same time, AD1 replaces AD3 as

an output device of Task 1. Downtime is unavoidable during

the reconfiguration of traditional production lines. Differently,

CaaS can realize “connect and control” for newly added

devices and seamless reconfiguration for updated control tasks.

Then CaaS CNC recalculates the schedule for the updated

tasks and instantly deploys it to the whole network.

B. System Architecture

As seen in Fig. 6, a CaaS industrial control system consists

of devices, CaaS switches, and CNC. CaaS CNC runs the joint

task and traffic scheduling algorithm, which will be presented

in Sec. V.

We sketch the design of CaaS switches on the right of Fig. 6.

CaaS switch adopts a hardware-software co-design to integrate

data transmission and task execution. The hardware part is

built upon an FPGA, i.e., Programmable Logic (PL). The

software part is built upon a dual-core CPU, i.e., Processing

System (PS).

PL implements functions that require high data rates
or precise timing. Specifically, it implements the data trans-

mission functions in accordance with IEEE TSN standards.

PL also includes some components that realize 802.1AS

time synchronization protocol, such as the real-time clock

(RTC) and the module that timestamps incoming and outgoing

packets.

PS implements functions that require complex process-
ing. (1) The LAD control tasks assigned to the switch are

executed by PS’s CPU. Specifically, a Packetized PLC IO
module (Sec. IV-B) is developed to decouple the physical

IO of devices and the logical IO of LAD. We also propose

several designs to ensure the time-sensitive execution of tasks

(Sec. IV-C). (2) PS implements the logic processing and

computation parts of the time synchronization protocol. (3) PS

also receives and configures the issued schedules from CaaS

CNC.

PS and PL communicate with three interfaces. The

first is a DMA channel to transmit the IO data of control

tasks. The second is another DMA channel, which transmits

CaaS metadata, including both time synchronization data and

schedule data. The last is an AXI-lite interface that writes

configurations to or retrieves information from PL.

By leveraging the advantages of both PL and PS, CaaS

realizes deterministic industrial control inside switches, which

makes it possible to turn the whole network into one virtual

PLC, and eventually enables the flexible reconfiguration, up-

scaling, and upgrade of a production line. The technical details

will be introduced in the following sections.

IV. SWITCH DESIGN

A. Switch Workflow

The workflow of CaaS switches is presented in Fig. 7.

The packets arriving at a switch’s PL originate from three

sources (denoted by inward arrows to the switch fabric):



Figure 7: Workflow of CaaS switch

(1) From the outside of the switch: the packets sent by

the connected devices and the packets forwarded by other

switches; (2) Control output from PLC runtime: the packets

carrying the control task’s output; (3) CaaS metadata from

PS: the packets carrying time synchronization and network

configuration information.

The switch fabric will process these packets in accordance

with their destination MAC addresses and EtherTypes. The

switch fabric processes packets in three ways (denoted by

outward arrows from the switch fabric): (1) To the outside of

the switch: forwarding packets not destined for this switch to

output ports directly by PL according to switch rules; (2) Con-

trol input: passing packets carrying control tasks’ input data

to PLC runtime; (3) CaaS metadata: passing packets carrying

time synchronization and network configuration information

to corresponding PS modules.

B. Control from Anywhere

A virtual PLC’s high-level abstraction requires that control

tasks can be executed at a low level on any CaaS switch within

a network. We propose Packetized PLC IO to encapsulate LAD

variables in Ethernet frames in order to decouple the physical

connection between IO devices and PLCs.

First, let’s see how IO is represented in PLC and LAD. As

shown in the upper part of Fig. 8, the thermometer provides

temperature as input, which is bound to the variable labeled

as %IW0 in LAD. The furnace accepts an output to control

its on/off, which is bound to the variable labeled as %QX0.0

(refer to [13] for the detailed naming conventions of variables).

In every execution cycle, a PLC reads the inputs, executes the

LAD program, and writes the outputs.

As a virtual PLC, the whole CaaS network has a unified

address space to label the inputs and outputs of the connected

devices. After the scheduling algorithm assigns the tasks to

switches, CaaS CNC will configure the input devices of a

task to encapsulate the input data and their address labels in

an Ethernet frame and send it periodically. The destination

MAC address will be set to the switch on which the associated

task is scheduled. For example, the thermometer in the lower

part of Fig. 8 encapsulates the temperature value (67) and the

address label (%IW0) in an Ethernet frame and sends it to

some switch in the network, which executes the control task.

Figure 8: Wired PLC IO and Packetized PLC IO

Figure 9: End-to-end determinism is guaranteed by TSN and

three proposed designs.

After receiving the frame carrying input data, the Packetized
PLC IO module binds the values to the LAD variables

indicated by the addresses and triggers the next run of LAD

programs. When the programs finish, the output value and

labeling addresses (e.g., 0 and %QX0.0 in Fig. 8) are embed-

ded again in an Ethernet frame and sent to the relevant output

devices (e.g., the furnace in Fig. 8). For devices that do not

support TSN, a converter or an encapsulator may be needed.

C. Make it Deterministic

Deterministic real-time control is essential to industrial

systems. How to ensure the end-to-end determinism is the

second challenge in the design of CaaS switch. The end-

to-end determinism consists of three parts: the transmission

determinism of the networks, the determinism of PL-PS data

exchange, and the computation determinism of the controllers.

In Fig. 9, we analyze the stages of the control process and

show how TSN and the three proposed designs guarantee the

end-to-end determinism. As shown in the figure, a packet

carrying input data is sent to the switch that executes the

control task. Then the results are packetized and sent to the

output device. In this process, TSN guarantees that the time

when the packet arrives at PL’s switch fabric is deterministic.

The first proposed design, Dual DMA, provides determinism

in the data exchange from PL to PS. The second design,

Core Isolation, ensures that the computation interval of control

tasks in PS is deterministic. The third design, Global-Time-
Aware (GTA) Execution, guarantees the determinism of when

the control task starts execution. At last, the output data is

embedded in packets and passed from PS to PL again via



Dual DMA, after which the TSN network delivers the data

to the output device. Next, we explain these three designs

respectively.

Dual DMA: Two kinds of data are exchanged between PS

and PL, i.e.,CaaS metadata and control tasks’ IO data. Con-

trol tasks’ IO data are time-sensitive and need deterministic

exchange between PL and PS, while the CaaS metadata are

not. To protect the transmission of time-sensitive data from

that of non-time-sensitive data, we design two DMA between

PL and PS. One DMA transmits control data and the other

transmits CaaS metadata.

Core Isolation: Besides PLC runtime, there are a number

of other processes running in PS at the same time, including

configuration client, time synchronization, and other switch

functions. To avoid the influence of these processes on PLC

runtime, we reserve a dedicated CPU core for the execution

of control tasks. All other processes will only run on the other

CPU core.

GTA Execution: The PLC runtime we use is based on

OpenPLC [14], which launches the execution according to

CPU time, instead of the global synced time. So we propose

GTA Execution. Instead of CPU time, the PLC runtime of

CaaS operates based on the synced time retrieved from PL’s

RTC module via the AXI-lite interface. Then it launches the

control tasks at the specified time in every period.

V. JOINT SCHEDULING ALGORITHM

The global schedule calculated by CaaS CNC should specify

the assignments of tasks to CaaS switches, as well as the start

time and finish time of the control tasks’ execution. Each task

is related to several data flows, including flows from input

devices to controller switches and from controller switches to

output devices. The schedule also indicates when these flows

pass each link along their paths, so the switches can reserve

time slots in advance.

A. Input Notation

We define the scheduling problem as finding a valid sched-

ule so that all tasks’ latency requirements are satisfied. The

input of the scheduling problem includes the network topology

G and the set of tasks J . The topology is modeled as a directed

graph G = (V,E). V is the set of vertices, representing

switches and devices. E is the set of edges, representing

the network links. If two nodes s and e are linked, two

edges, 〈s, e〉 and 〈e, s〉, are added to E since the link is full-

duplex. A switch node v ∈ V has an attribute v.d, which

is the switch’s forwarding delay. It is the minimum offset

between the time slots reserved on consecutive links. As for

the input tasks, a task ji ∈ J is characterized by 5 attributes:

(ji.S, ji.D, ji.T, ji.P, ji.MD). S is the set of input devices

and D is the set of output devices. The information about

input data length and output data length is also included. T is

the execution time of the task and P is its period. MD is the

maximum allowed delay of the task.

B. Formulation

We model the joint scheduling problem as a Satisfiability

Modulo Theory (SMT) problem. It then can be solved by an

SMT solver.

Task Constraints: For each task ji, we define three

scheduling variables: (ji.host, ji.start, ji.o), where ji.host ∈
V is the switch that executes this task, ji.start is the start time

of execution and ji.o indicates if the task is scheduled to start

in the next period. The constraint for tasks is that the tasks

assigned to the same host cannot overlap with each other in

time dimension.

Flow Constraints: A task ji is related to |ji.S| input data

flows and |ji.D| output data flows. The set of all data flows

related to ji is represented by Fi. We define a series of

indicator variables to describe the flows’ usage of links as

in [15]:

xikse =

{
1, if flow fik passes link (s, e),

0, if flow fik does not pass link (s, e),

where fik ∈ Fi is the kth flow related to ji and (s, e) ∈ E
represents a link. For input flows, fik.src ∈ ji.S is the source

device. For output flows, fik.dst ∈ ji.D is the destination

device. We define scheduling variables tikse and oikse to

describe the reserved time slots on links for data.

• tikse is an integer variable in range [0, ji.P ), which is

the start time of fik’s time slot on link (s, e).
• oikse is 0 or 1, indicating if the scheduled time slots are

in the next period.

When a flow passes network links, the scheduled slots

on successive links cannot precede those on former links.

Additionally, the time slots reserved for different flows on the

same link cannot overlap with each other.

Flow-Task Dependency Constraints: The CaaS switches

where the tasks are executed determine the destinations of in-

put data flows and the sources of output data flows. We assume

the flows always follow the shortest paths between sources

and destinations. Thus, the flow path is also determined. This

dependency is described by the following constraints. Vsw

represents the set of CaaS switches. shortestpath finds the

shortest path between two nodes:

∀ji ∈ J, ∀fik ∈ Fi, ∀h ∈ Vsw :

m ←
{
fik.src, if fik is an input flow,

fik.dst, if fik is an output flow,

sp ← shortestpath(h,m).

∀(s, e) ∈ E,

AddConstraints(Imply(ji.host = h ∧ (s, e) ∈ sp, xikse = 1)),

AddConstraints(Imply(ji.host = h ∧ (s, e) /∈ sp, xikse = 0)),

(1)

where AddConstraints adds the constraints to the SMT

model, and Imply is a type of SMT constraint, which means

that the first argument implies the second argument. We set



tikse and oikse to 0 for the links that are not on the path of

the flow:

∀ji ∈ J, ∀fik ∈ Fi, ∀(s, e) ∈ E :

AddConstraints(Imply(xikse = 0, tikse = 0 ∧ oikse = 0)).
(2)

Additionally, the scheduled interval for task execution

should be after the arrival of input data. F src
i represents the

input flows of ji and fik.l represents the time needed to

transmit the input or output data:

∀ji ∈ J, ∀fik ∈ F src
i :

endt ←
∑

(s,e)∈E

If(xikse = 1 ∧ ji.host = e,

tikse + oikse × ji.P + fik.l, 0),

AddConstraints(ji.start+ ji.o× ji.P ≥ endt),

(3)

where If(p, v1, v2) is an SMT function. Its value equals v1
if p is true, otherwise its value equals v2. The destinations of

input flows are uncertain. Thus the arrival time of input data

cannot be directly represented by scheduling variables tikse
and oikse.

Similarly, the scheduled transmission of output data should

also be after the completion of control tasks. F dst
i represents

the output flows of ji:

∀ji ∈ J, ∀fik ∈ F dst
i :

startt ←
∑

(s,e)∈E

If(xikse = 1 ∧ ji.host = s,

tikse + oikse × ji.P, 0),

AddConstraints(ji.start+ ji.o× ji.P+

ji.T ≤ startt).

(4)

At last, the schedule must ensure that the latency of the task,

including both transmission latency and computation latency,

does not exceed the maximum allowed value. The latency is

defined as the interval between the arrival of the last output

flow and the departure of the first input flow:

∀ji ∈ J :

srcti ← min({
∑

(s,e)∈E,s=fik.src

(tikse + oikse × ji.P )

|fik ∈ F src
i }),

dstti ← max({
∑

(s,e)∈E,e=fik.dst

(tikse + oikse × ji.P )

+ fik.l|fik ∈ F dst
i }),

AddConstraints(dstti − srcti ≤ ji.MD),

(5)

Optimization Objective: An optional optimization objec-

tive can be added to the model to minimize the tasks’ latency,

instead of just finding a valid schedule:

Minimize(
∑
ji∈J

dstti − srcti), (6)

where dstt and srct are defined in Eq.(5).

VI. IMPLEMENTATION

We implement CaaS switches on Xilinx ZYNQ-7000

SoC [16]. ZYNQ-7000 SoC combines the hardware pro-

grammability of an FPGA and the software programmability

of an ARM-based processor, which matches the architecture

design of CaaS switches.

TSN Switch Fabric: TSN switch fabric in PL is imple-

mented in Verilog following IEEE TSN standards [11], [12],

[17], [18]. Each port has three frame queues in the switch

fabric, one for the I/O data of control tasks, one for CaaS

metadata, and one for background traffic.

Time Synchronization: We implement the time synchro-

nization protocol defined in IEEE 802.1AS [10]. The modules

that require precise timing including real-time clock and times-

tamping module are implemented using Verilog and run on PL.

The modules implementing the synchronization algorithm of

802.1AS are developed in C/C++ and run on PS.

CaaS PLC Runtime: The PLC runtime of CaaS is de-

veloped based on an open-source project: OpenPLC [14]. We

replace the hardware IO layer of OpenPLC with our Packetized
PLC IO layer. We also connect PL’s real-time clock module

to PS through the AXI-lite interface and implement a Linux

driver to access the synced time. This is the basis to implement

Global-Time-Aware Execution.

VII. EVALUATION

A. Overall System Performance

In this section, we evaluate the overall system performance

of CaaS on two testbeds.

1) Setup: Topology: The first testbed A380 uses the topol-

ogy shown in Fig. 10a, which is a simplified version of the

control network used on Airbus A380 [19]. It consists of 9

switches and 8 devices. The second testbed Ring6 uses the

ring topology shown in Fig. 10e, consisting of 6 switches and

6 devices. Ring topology is also common in industrial control

networks [20], [21].

Baseline: The goal of CaaS is to realize a flexible industrial

control system that can satisfy the determinism requirements

of critical control tasks. It is very difficult if not impossible to

set up a baseline with commodity PLCs and industrial switches

since their systems are closed and proprietary. So we compare

CaaS with two baselines built upon TSN and OpenPLC. To

make baselines runnable on testbeds, both of them implement

Packetized PLC IO. Baseline w/o GTA is a vanilla solution that

has single DMA, no Core Isolation, and no GTA Execution.

Baseline w/ GTA implements GTA Execution additionally so

it can follow CNC’s task execution schedule. Two baselines

adopt the two-step scheduling algorithm, which first schedules

tasks under Task Constraints described in Sec. V-B, and then

schedules network traffic under Flow Constraints and Flow-
Task Dependency Constraints.

Setting: We conduct 50 experiments on each testbed. In

each experiment, we set the period of tasks as 33ms, the task

execution time as 1ms, which are typical values in industrial

systems [22], [23]. We randomly generate n tasks with m
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Figure 10: Overall performance on different testbeds.

sensor devices and q actuator devices, where n equals the

number of CaaS switches, m and q are randomly chosen from

1 to 4 [19]. Both scheduling algorithms are set to minimize

the tasks’ latency.

Metric: For each task, we measure the average latency, jitter

(standard deviation of latency), and packet loss rate for 1,000

periods. A packet is dropped if the relevant task misses the

scheduled computation time.

2) Results: Fig. 10 shows results on different testbeds.

Overall, CaaS achieves absolute packet delivery, 42-45% lower

latency, and three orders of magnitude lower jitter on both

testbeds.

Fig. 10b and 10f display the loss rate results. On both

testbeds, the loss rate of Baseline w/o GTA equals 1, i.e.,
no packet can be transmitted as scheduled because the PLC

runtime is unaware of the global synced time. Thus we

introduce the second baseline, Baseline w/ GTA. The CDFs

show that CaaS achieves 0 packet loss on both testbeds, while

for Baseline w/ GTA, the 99 percentile loss rate is 3.18%

(A380) and 2.47% (Ring6).

The distribution of mean latency is shown in Fig. 10c and

10g. It is clear that CaaS shows more concentrated latency

distribution and lower average latency than baseline. Taking

Fig. 10c as an example, most tasks’ latency in CaaS lies in

a narrow range around 1.31ms, while the latency of Baseline
w/ GTA is distributed evenly from 1.46ms to 3.24ms. On

average, CaaS achieves 42-45% lower latency. There are

two reasons for the improvement. First, Task & Traffic Joint
Scheduling Algorithm can optimize the schedule globally by

tuning the task schedule and traffic schedule at the same

time, while the two-step scheduling method can only find

a local minimum. Second, techniques in Sec. IV-C ensure

the determinism of PL-PS communication and task execution.

Therefore, CaaS can follow the schedule perfectly, while the

baseline always deviates from the plan.

As shown in Fig. 10d and 10h, the jitter of CaaS is almost

negligible compared to the baseline. Specifically, the median

jitter on A380 and Ring6 is 4.6μs, 3.7μs for CaaS, and

5.4ms, 5.6ms for baseline, respectively. The jitter of CaaS

is over three orders of magnitude lower than baseline. The

main reason is the absence of Core Isolation in the baseline,

which causes uncertain execution time.

B. Component Study of CaaS Switch

In this section, we evaluate the key components in the design

of CaaS switch, including Dual DMA, Core Isolation, and

Global-Time-Aware Execution.
1) Setup: We set up a mini testbed for the component study,

which consists of two devices connected by one CaaS switch.

A control task is executed on the switch, with one device as

its sensor and the other as its actuator. The task’s period and

execution time are 33ms and 1ms, respectively. We compare

CaaS with its three variants to find out the effectiveness of

each component of CaaS switch: (1) CaaS w/o Dual DMA.
Both control data and CaaS metadata share a single DMA. (2)

CaaS w/o Core Isolation. Both CPU cores are available for

all processes. (3) CaaS w/o GTA Execution. The PLC runtime

scans DMA input based on CPU time, instead of the global

synced time.
2) Results: In each experiment, the task is executed 1,000

times and the task’s latency is recorded. The CDF of each

method’s latency under different settings is shown in Fig. 11.

The lost packets’ latency is seen as infinity.

Dual DMA: In the first experiment, we evaluate CaaS’s

performance w/ and w/o Dual DMA (D-DMA and S-DMA).

The results are shown in Fig. 11a. We also study the impacts

of traffic load on the two methods. The results show that
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Figure 11: CDF of latency for component study. (a) Light (L), medium (M) and heavy (H) refer to network loads of 0Mbps,

5Mbps and 10Mbps, respectively, consumed by extra data transmitted from PL to PS. (b) L, M and H refer to 0%, 50% and

75% CPU usage, consumed by background processes.

the performance of D-DMA is almost identical from light to

heavy traffic load. Thus only one CDF of D-DMA is drawn in

Fig. 11a due to space considerations. However, S-DMA suffers

from heavier traffic load. The packet loss rate rises from 3.1%
to 55.4%. For D-DMA, PLC IO data are transmitted through

a dedicated DMA, thus the loss rate is always 0, not affected

by other traffic.

Core Isolation: In the second experiment, we evaluate

CaaS’s performance w/ and w/o Core Isolation (w/ CI and

w/o CI). The results are shown in Fig. 11b. We also study the

impacts of CPU usage on the two methods. Since processes

other than PLC runtime cannot run on the isolated CPU core,

the performance of w/ CI is not affected by CPU usage. Again,

only one CDF line of w/ CI is reserved for simplicity. In

contrast, the performance of w/o CI degrades significantly with

CPU usage increasing. The uncertainty of latency is due to the

influence of other processes on the execution of control tasks.

Furthermore, the uncertainty of latency also causes some tasks

to violate the execution schedule, resulting in packet loss.

GTA Execution: In the third experiment, we evaluate

CaaS’s performance w/ and w/o GTA Execution (w/ GTA and

w/o GTA). Different from previous experiments that drop the

packets if the relevant tasks violate the execution schedule,

we reserve all packets in this experiment to study the detailed

impacts of GTA Execution. The results are shown in Fig. 11c.

The latency of w/ GTA is very stable around 1.2ms, while

the latency of w/o GTA is scattered evenly in one period

(from about 1ms to 35ms). This is because w/o GTA executes

control tasks according to its local CPU clock, which drifts

away from the synced global time.

VIII. RELATED WORK

Virtual PLC: In recent years, some work tries to replace

the hardware PLCs in industries with virtual ones running

in virtual machines or containers. For example, Givehchi et
al. [24] provide a case study to build virtual PLCs in cloud

servers in order to bring more agility to industrial automation

systems. Hegazy et al. [25] also deploy the control tasks to

cloud servers and propose an adaptive delay compensator and

a distributed fault tolerance method to improve timeliness and

reliability. Due to the network delay and jitter of cloud servers,

the determinism of virtual PLCs is limited even with private

clouds. They can only satisfy the requirements of soft real-

time applications [24]. As a result, critical control tasks still

rely on hardware PLCs. We need a new design for industrial

control systems that can both provide agility and satisfy the

determinism requirements of critical control tasks.

TSN Scheduling: The scheduling of TSN traffic has been

studied widely. Most of them treat TSN scheduling as one

time offline problem. Craciunas et al. first formulate TSN

scheduling as Satisfiability Modulo Theories (SMT) problem

in 2016 [26], based on their previous work on other deter-

ministic networks [27]–[29]. Besides, some work uses Integer

Linear Programs (ILP) to formulate and solve the problem in

different ways [30]–[32]. Another group of work considers

the dynamic change of network topology or traffic flows,

and thus focuses on accelerating the scheduling algorithms.

They design heuristics like Tabu search [33]–[35], incremental

backtracking [36], greedy randomized search [37], [38], or

deep reinforcement learning [39] to increase the number of

flows that can be scheduled under a fixed time budget. In a

nutshell, prior work only focuses on traffic scheduling, while

CaaS jointly considers task and traffic scheduling problems.

IX. CONCLUSION

In this work, we propose CaaS, a new architecture for

industrial control systems. It transfers and distributes control

tasks from dedicated controllers into network switches. In the

design of CaaS, control is a service and the details of the

control mechanism are hidden from callers. The evaluation

results show that CaaS is feasible and effective, and achieves

significant performance gain. CaaS, we believe, is a significant

step towards the distribution, virtualization, and servitization

of industrial control. Numerous industrial control system

challenges must be addressed from a network perspective.

The authors have provided public access to their code at

https://doi.org/10.5281/zenodo.7489411.
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